

OVERVIEW

- Basics
- Generalized Schur Form
- Shifts / Generalized Shifts
- Partial Generalized Schur Form
- Jacobi-Davidson QZ Algorithm

BASICS

Generalized Eigenvalue Problem $\quad A x=\lambda B x$ or $(A-\lambda B) x=0$ We call (λ, x) a (right) eigenpair and (A, B) a (matrix) pencil
Left eigenpair $y^{*} A=\lambda y^{*} B \Leftrightarrow A^{*} y=\bar{\lambda} B^{*} y$
Pencil (A, B) regular if $\operatorname{det}(A-\lambda B)$ is not identically zero (for all λ)
Example singular/degenerate pencil: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ Pencil is singular as $\operatorname{det}(A-\lambda B)=0$ for any λ.

Regular pencil has finite number of eigenvalues - characteristic equation is polynomial of degree $m \leq n$. If polynomial not identically zero, then at most m zeros. For singular B possible that char. polynomial is nonzero constant.

BASICS

Regular pencil has finite number of eigenvalues
Characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda B)$ is poly of degree $m \leq n$
If polynomial not identically zero, then at most m zeros
For singular B possible that characteristic polynomial is nonzero constant - no eigenvalues

If $\lambda \neq 0$ eigenvalue of (A, B) then $\mu=\lambda^{-1}$ eigenvalue of (B, A)
If B singular and $B x=0(x \neq 0)$, then $(0, x)$ eigenpair of (B, A)
Hence natural to consider (∞, x) eigenpair of (A, B)
Moreover, if polynomial degenerate (not of full degree) then some eigenvalues must be infinite (and B must be singular)

GENERALIZED SCHUR FORM

Generalized Schur form for regular (A, B)
Unitary U, V exist such that $S=U^{*} A V, T=U^{*} B V$ both uppertriangular

Generalized eigenvalues: $\operatorname{det}(S-\lambda T)=0 \Leftrightarrow \lambda=\frac{s_{i i}}{t_{i i}}$ and $\lambda(T, S)=\frac{t_{i i}}{s_{i i}}$
Easy for triangular problem - note better to think of $\left\langle s_{i i}, t_{i i}\right\rangle$ than λ
Eigenvalues of (S, T) are eigenvalues of (A, B) :
$(A-\lambda B) x=0 \Leftrightarrow(A-\lambda B) V V^{-1} x=0 \Leftrightarrow U^{*}(A-\lambda B) V\left(V^{-1} x\right)=0$
Eigenvalue λ unchanged and eigenvector transformed to $V^{-1} x$
Same for left eigenvector $y \rightarrow U^{-1} y$
Prefer unitary U, V for numerical stability

GENERALIZED SCHUR FORM

Note that $\operatorname{det}\left(U^{*}(A-\lambda B) V\right)=\operatorname{det}(U) \operatorname{det}(V) \operatorname{det}(A-\lambda B)$

Nonsingular U, V do not change the zeros, so eigenvalues and multiplicities are preserved.

For unitary U, V determinants are unit scalars
$p_{(A, B)}(\lambda)=\operatorname{det}(A-\lambda B)$ is characteristic polynomial
Algebraic multiplicity of eigenvalue is its multiplicity as root of char. pol.
If m degree of $p_{(A, B)}(\lambda)$, then (A, B) has infinite eigenvalue of mult. $n-m$

SHIFTING THE PROBLEM

If (A, B) regular and B nonsingular: $A x=\lambda B x \Leftrightarrow B^{-1} A x=\lambda x$
Useful both for analysis and algorithms.
For singular B (and efficient algorithms) we may want to shift the problem Take $\mu=\frac{\lambda}{1+\omega \lambda} \Leftrightarrow \mu=\lambda-\mu \omega \lambda$

$$
A x=\lambda B x \Leftrightarrow A x-\mu \omega A x=\mu B x \Leftrightarrow A x=\mu(B+\omega A) x
$$

If $(B+\omega A)$ is well-conditioned we can work with $(B+\omega A)^{-1} A x=\mu x$
In practice, near singular B is just as problematic as singular B
If $(A, B) \rightarrow(\lambda, x)$ then $(A, B+\omega A) \rightarrow\left(\frac{\lambda}{1+\omega \lambda}, x\right)$

MORE GENERAL SHIFT

We can shift more generally.
If A and $\left(\begin{array}{ll}w_{11} & w_{12} \\ w_{21} & w_{22}\end{array}\right)$ nonsingular, and
let $(C, D)=\left(w_{11} A+w_{21} B, w_{12} A+w_{22} B\right)$
Then $(\langle\alpha, \beta\rangle, x)$ is eigenpair of (A, B)
if $\left(\left\langle w_{11} \alpha+w_{21} \beta, w_{12} \alpha+w_{22} \beta\right\rangle, x\right)$ eigenpair of (C, D)
Can be used to make methods that require inverse (in some way) of one of the matrices better behaved.

Can be used to base analysis of generalized problem on analysis of standard problem.

PARTIAL GENERALIZED SCHUR FORM

For large problems we are typically interested only in selected eigenvalues and corresponding right (and/or left) eigenspace: partial generalized Schur form.

Consider $A x=\lambda B x=\alpha / \beta B x \Leftrightarrow \beta A x-\alpha B x=0$
Partial generalized Schur form: Find $Q_{k}, Z_{k} \in \mathbb{C}^{n \times k}$ with orthonormal cols and $R_{k}^{A}, R_{k}^{B} \in \mathbb{C}^{k \times k}$ upper triangular such that $A Q_{k}=R_{k}^{A}$ and $B Q_{k}=Z_{k} R_{k}^{B}$. Let $\alpha_{i}=\left(R_{k}^{A}\right)_{i i}$ and $\beta_{i}=\left(R_{k}^{B}\right)_{i i}$ be diagonal coefficients

If $\left(\left\langle\alpha_{i}, \beta_{i}\right\rangle, y\right)$ is generalized eigenpair of $\left(R_{k}^{A}, R_{k}^{B}\right)$, then $\left(\left\langle\alpha_{i}, \beta_{i}\right\rangle, Q_{k} y\right)$ is generalized eigenpair of (A, B)

Note that solving $\left(R_{k}^{A}-\alpha_{i} / \beta_{i} R_{k}^{B}\right) y=0$ is simple (upper triangular)

JACOBI DAVIDSON QZ

Assume we have approximate space V for Q_{k} and W for Z_{k}, we use (so-called) Petrov-Galerkin approximation: Find $u \in \operatorname{range}(V) \rightarrow u=V y$ such that

$$
\eta A u-\zeta B u \perp W \Rightarrow \eta W^{*} A V y-\zeta W^{*} A V y=0
$$

So, given V, W we solve a small generalized eigenvalue problem (LAPACK) for $\left(W^{*} A V, W^{*} B V\right)$ (typically using, dense, standard QZ algorithm)

Find unitary S_{L}, S_{R} such that

$$
\begin{aligned}
& S_{L}^{*}\left(W^{*} A V\right) S_{R}=T_{A} \rightarrow \zeta_{i} \text { (diag) } \\
& S_{L}^{*}\left(W^{*} B V\right) S_{R}=T_{B} \rightarrow \zeta_{i} \text { (diag) }
\end{aligned}
$$

Now $V S_{R}$ approximates Q_{k} and $W S_{L}$ approximates Z_{k} We can take W s.t. $\operatorname{range}(W)=\operatorname{range}\left(\nu_{0} A V+\mu_{0} B V\right)$

JACOBI-DAVIDSON QZ

Improve by solving JD correction equation for $t \perp u$ for pencil $\eta A-\zeta B$

$$
\left(I-\frac{p p^{*}}{p^{*} p}\right)(\eta A-\zeta B)\left(I-u u^{*}\right) t=-r
$$

where

$$
\begin{aligned}
& r=(\eta A-\zeta B) u \\
& p=\nu_{0} A u+\mu_{0} B u
\end{aligned}
$$

Solve correction equation (very) approximately: t (exact solve yields quadratic convergence near a solution)
Extend spaces:

$$
\begin{aligned}
& v_{m+1}=\left(t-V_{m} V_{m}^{*} t\right) /\left\|t-V_{m} V_{m}^{*} t\right\|_{2} \quad \text { (accurately) } \\
& \tilde{w}=\nu_{0} A v_{m}+\mu_{0} B v_{m} \text { and } w_{m+1}=\left(\tilde{w}-W_{m} W_{m}^{*} \tilde{w}\right) /\left\|\left(\tilde{w}-W_{m} W_{m}^{*} \tilde{w}\right)\right\|_{2}
\end{aligned}
$$

Note if $u=V\left(S_{R}\right)_{1}=V S_{R} e_{1}$ then $p=W S_{L} e_{1}$

DEFLATION AND RESTART

We have $A Q_{k-1}=Z_{k-1} R_{k-1}^{A}$ and $B Q_{k-1}=Z_{k-1} R_{k-1}^{B}$
Extend
$A\left[Q_{k-1} q\right]=\left[Z_{k-1} z\right]\left[\begin{array}{cc}R_{k-1}^{A} & a \\ 0 & \alpha\end{array}\right] \quad$ and $\quad B\left[Q_{k-1} q\right]=\left[Z_{k-1} z\right]\left[\begin{array}{cc}R_{k-1}^{B} & b \\ 0 & \beta\end{array}\right]$
New generalized Schur pair $(\langle\alpha, \beta\rangle, q)$:
$Q_{k-1}^{*} q=0 \quad$ and $\quad\left(I-Z_{k-1} Z_{k-1}^{*}\right)(\beta A-\alpha B)\left(I-Q_{k-1} Q_{k-1}^{*}\right) q=0$
where $a=Z_{k-1}^{*} A q$ and $b=Z_{k-1}^{*} B q$
Hence $(\langle\alpha, \beta\rangle, q)$ is eigenpair of
$\left(\left(I-Z_{k-1} Z_{k-1}^{*}\right) A\left(I-Q_{k-1} Q_{k-1}^{*}\right),\left(I-Z_{k-1} Z_{k-1}^{*}\right) B\left(I-Q_{k-1} Q_{k-1}^{*}\right)\right)$
Restarting by using Generalize Schur Form and taking desired part

GOOD READING

